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1. Introduction 

 

Optical solitons is a very fascinating area of study 

in nonlinear optics and optoelectronics. There are 

several aspects of these solitons that are addressed in this 

context. These are numerical simulations, integrability 

aspects, conservation laws, adiabatic dynamics,  

multiple-scale analysis and several others [1-20]. 

However, one of the most challenging issues, as always, 

is to obtain soliton solutions to the governing model by 

analytical method. A closed form analytical solution is 

always welcome in this field. These solutions give a 

complete picture of the model and thus provides an 

overall exposure to the underlying scientific features to 

the governing model equation. There are several 

integration tools available to carry out this integration to 

reveal solitons and other solutions. This paper will 

implement trial solution technique to generalized 

resonant dispersive nonlinear Schrödinger’s equation 

(GRD-NLSE), with power law nonlinearity to extract 

optical soliton solution. In the past, Lie symmetry 

analysis, ansatz approach and other algorithms were 

implemented [1, 3, 11, 12, 14, 15]. However, with power 

law nonlinear medium, this paper provides a generalized 

flavor to the results that are reported earlier. 

 

 

2. Mathematical model  
 

The dimensionless form of GRD-NLSE that will be 

analyzed in this paper is given by  
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For this model, ),( tx  is the wave profile and is a 

complex valued function. )(t  and )(t  respectively 

represent the coefficients of the generalized group velocity 

dispersion (GVD) and power law nonlinearity. Then )(t  

represent the coefficient of the resonant term that appears in 

the study of Madelung fluids. All of these coefficients are 

taken to be time-dependent. The parameter m  dictates 

power law nonlinearity. When 2m , this model equation 

collapses to Kerr law that is occasionally referred to cubic 

NLSE. Finally, the parameter n  governs generalized GVD. 

For 1n , this model equation condenses to regular NLSE. 

This parameter n  thus maintains GVD on a generalized 

setting. During long distance soliton propagation, the 

evolution and the GVD gets distorted and thus modified. 

Therefore, it is necessary to consider NLSE where the 

evolution and GVD are modified to maintain the dynamics 

of soliton propagation from a realistic perspective.  

 

 

3. Trial equation method 
 

In this section we outline the main steps of the trial 

equation method [9, 12, 13] as follows: 

Step-1: Suppose a nonlinear evolution equation with 

time-dependent coefficients is given in the form 
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0,...),,,,,( xxxtttxt uuuuuuP               (1) 

 

can be converted to an ordinary differential equation 

(ODE)  

 

0,...),,,(  UUUUQ                     (2) 

 

using a traveling wave variable )(),( Utxu  ,  

ttvx )( , where )(UU   is an unknown 

function, Q  is a polynomial in the variable U  and its 

derivatives.  If all terms contain derivatives, then Eq. (2) 

is integrated where integration constants are considered 

zeros. 

Step-2: Choose a trial equation  

 

  



s

l

l

lUaUFU
0

2
)(                        (3) 

 

where )...,,1,0(, slal   are constants to be 

determined. Substituting Eq. (3) and other derivative 

terms such as U    or U    and so on into Eq.  (2) yields 

a polynomial )(UG  of  U  . According to the balance 

principle we can determine the value of s . Setting the 

coefficients of )(UG  to zero, we get a system of 

algebraic equations. Solving this system, we shall 

determine )(tv and values of saaa ...,,, 10 .   

Step-3: Rewrite Eq. (3) by the integral form  

 

 dU
UF )(

1
)( 0                     (4) 

 
Based on common discriminant system of a 

polynomial, we classify the roots of )(UF , and 

integrate (4). This leads to exact solutions to the model. 

 

 

3.1 Application to GRD-NLSE  

 

In this subsection, trial equation method will obtain 

exact solutions GRD-NLSE with time-dependent 

coefficients and power law nonlinearity [1, 3, 12]  
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Under the traveling wave transformation  

 
 ttxieUtx )()(),(                    (6-1) 


t

dttx
0

')'(2                               (6-2) 

 
we have  
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In order to obtain closed form solutions, the 

transformation  

nmVU  1

1

)(                                (8) 

 

is applied that will reduce Eq. (5) into the ODE  
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Balancing VV   with 
3V  in Eq. (9), then we get 

3s . Using the solution procedure of the trial equation 

method, we obtain the system of algebraic equations as 

follows: 
3V   Coeff.:  
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2V   Coeff.:  

 

 

  0)()()1(

)()(
)(

)1(

)12()()(

2

22

2















attnmn

tt
dt

td
tnm

amnntt








  (10-2) 

 
1V   Coeff.:  
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0V   Coeff.:  

 

  0)12()()( 0  amnntt         (10-4) 

 

Solving the above system of algebraic equations, 

we obtain the following:  
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where   and 2a   are arbitrary constants.  

Substituting these results into Eqs. (3) and (4), 

gives  
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Integrating Eq. (11), exact 1-soliton solutions of 

Eq. (5) are obtained as  
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which are bright and singular solitons respectively and these 

exist for 02 a .  

However, for 02 a , singular periodic solutions are 

given by  
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These singular periodic solutions are not studied in 

optics. However, they are listed here for a complete 

spectrum.  

 

 
4. Conclusion 

 

This paper successfully demonstrated the application of 

trial solution method to secure soliton solutions to GRD-

NLSE with power law nonlinearity. Two forms of optical 

soliton solutions are retrieved. They are bright and singular.  

Additionally, as a byproduct, singular periodic solutions 

naturally emerged from this scheme. These soliton solutions 

will be of great asset in the field of optoelectronics. Later, 

further generalized form of GRD-NLSE will be studied. The 

results of those projects will soon be reported. Furthermore, 

Lie symmetry approach will also reveal conservation laws. 

These results are all under way. 
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